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Abstract Tomoji Shogenji is generally assumed to be the first author to have presented

a probabilistic measure of coherence. Interestingly, Rudolf Carnap in his Logical

Foundations of Probability discussed a function that is based on the very same idea,

namely his well-known relevance measure. This function is largely neglected in the

coherence literature because it has been proposed as a measure of evidential support and

still is widely conceived as such. The aim of this paper is therefore to investigate

Carnap’s measure regarding its plausibility as a candidate for a probabilistic measure of

coherence by comparing it to Shogenji’s. It turns out that both measures (i) satisfy and

violate the same adequacy constraints, (ii) despite not being ordinally equivalent exhibit

a strong correlation with each other in a Monte Carlo simulation and (iii) perform

similarly in a series of test cases for probabilistic coherence measures.

1 Introduction

In his response to Klein and Warfield’s (1994) rejection of the truth-conduciveness

of coherence, Shogenji (1999) presented a mathematical function which is supposed

to measure the degree of coherence of two propositions x1 and x2 under some joint

probability distribution P, namely Cshoðx1; x2Þ ¼ Pðx1 ^ x2Þ=Pðx1Þ � Pðx2Þ. He also
provided a straightforward generalization of this measure for any finite, non-empty,

non-singleton set X of propositions under some probability function P:

CshoðXÞ ¼ P
^

xi2X
xi

 !,
Y

xi2X
PðxiÞ
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For a set of probabilistically independent propositions Shogenji’s measure equals 1

while for negatively/positively dependent propositions the measure takes values

below/above this threshold value.1 Accordingly, a value of 1 is treated as neutral

coherence value while values below/above 1 are interpreted as degrees of inco-

herence/coherence. The measure is therefore commonly understood as measuring

coherence in terms of the ratio-wise deviation from probabilistic independence (cf.

Shogenji 1999, 339–340; for criticism of this view or Shogenji’s measure in general

cf. e.g. Akiba 2000; Fitelson 2003; Wheeler 2009).

Now, it is quite interesting to see that Carnap (1950, §67) in his seminal Logical

Foundations of Probability suggested a very similar function for measuring the

degree to which a piece of evidence e (incrementally, not absolutely) confirms/

disconfirms a hypothesis h under some probability distribution P, his relevance

measure rðh; eÞ ¼ Pðh ^ eÞ � PðhÞ � PðeÞ. Carnap’s measure is obviously a special

case of the following function which similar to Shogenji’s generalization is defined

for any non-empty, non-singleton set X rather than only pairs of propositions (h, e)

under some probability function P:

CcarðXÞ ¼ P
^

xi2X
xi

 !
�
Y

xi2X
PðxiÞ

Apparently, this function only differs from Shogenji’s in using the difference

instead of the ratio. But just like Shogenji’s measure it also quantifies degree to

which the propositions deviate from probabilistic independence. For this measure

independence is associated with a value of 0 and values below/above this threshold

indicate negative/positive dependence. Following the general interpretation of the

Shogenji measure, it seems quite natural to interpret Carnap’s measure as a can-

didate explication for coherence, measured in terms of the difference-wise deviation

from probabilistic independence. This interpretation is not only very natural but it

also provides new hope for Carnap’s relevance measure since it is well documented

in the literature that the measure fares rather poorly as a measure of confirmation

(cf. e.g. Eells and Fitelson 2002; Crupi et al. 2007).2

There is also an improved, subset-sensitive version of Shogenji’s measure by

Schupbach (2011).3 Based on Fitelson’s (2003) observation that for a set X with n

propositions Shogenji’s measure only takes into account n-wise dependence

neglecting the dependencies in the subsets, Schupbach suggested to apply a log-

1 By definition, a set of propositions X is negatively dependent/independent/positively dependent if and

only if Pð
V

xi2X xiÞ\= ¼ =[
Q

xi2X xi (cf. e.g. Kolmogorov 1956, §I.5).

2 It is also worth noticing that Carnap’s interpretation of the measure slightly differs from what is usually

assumed to be a confirmation measure. According to Carnap, the measure is supposed to quantify the

mutual relevance two propositions have for each other as opposed to the one-way relevance one proposition,

a piece of evidence e, might have for another proposition, a hypothesis h (cf. Carnap 1950, §67). This idea

of mutual relevance also suggests to investigate Carnap’s measure as a probabilistic measure of coherence.
3 Other authors have presented probabilistic coherence measures as well, e.g. Douven and Meijs (2007),

Fitelson (2003), Glass (2002), Meijs (2005), Olsson (2002), Roche (2013) and Schippers (2014).

However, these measures will not be discussed here since they are not based on the idea of coherence as

deviation from probabilistic independence. Nevertheless, a comparative study between the omitted and

the included measures should be taken into consideration in future research.
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normalization of Shogenji’s measure to each X0
ij denoting X’s ith subset with j� 2

propositions and to calculate a weighted average over the resulting values, formally:

C0
shoðXÞ ¼

Pn
j¼2

P
n

j

� �

i¼1 log CshoðX0
ijÞ

� �
�

n

j

� ��1

n� 1

The same generalization can be applied to Carnap’s measure, resulting in a more

fine-grained version of the measure. But since unlike Shogenji’s measure Carnap’s

measure is point symmetric around its independence threshold 0, it does not need to

be log-normalized:

C0
carðXÞ ¼

Pn
j¼2

P
n

j

� �

i¼1 CcarðX0
ijÞ �

n

j

� ��1

n� 1

Now, the aim of this paper is rather straightforward. It is to examine whether Ccar or

C0
car are at least as plausible as candidates for probabilistic measures of coherence as

Csho and C0
sho respectively—especially if we keep in mind that Csho and C0

sho are

widely accepted as probabilistic measures of coherence. In order to do this we will

compare the measures with respect to a set of coherence desiderata in Sect. 2 and

with respect to a collection of coherence test cases from the literature in Sect. 3. Our

findings are summarized in Sect. 4.

2 Coherence Desiderata

In order to evaluate the adequacy of probabilistic coherence measures, several

desiderata have been suggested in the literature. The idea underlying such desiderata

is to formulate structural properties a coherence measure should have in order to be

adequate. Recently, Schippers (2014) presented a survey of the desiderata discussed

so far. We will inspect the introduced measures with respect to these desiderata and

one further, more recent desideratum which is not included in Schippers’

investigation. Proofs for the corresponding observations are given in the Appendix.

The first desideratum is due to Fitelson (2003). According to him, the degree of

coherence of a set of propositions should be a function of the joint probabilistic

dependencies of all subsets of this set:

ðD1Þ For any probability distribution P over a set X and any coherence measure C

with neutrality threshold hC:

1. CðXÞ[ hC if all X0 � X are positively dependent

2. CðXÞ ¼ hC if all X0 � X are independent

3. CðXÞ\hC if all X0 � X are negatively dependent

As indicated above, the threshold values are hCsho
¼ 0 and hC0

sho
¼ hCcar

¼ hCcar
¼ 1.

It can easily be shown that the following holds:
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Observation 1 Csho, Ccar, C
0
sho and C0

car satisfy D1.

Since the measures are defined to measure the deviation from probabilistic

independence, it is no wonder that they satisfy Fitelson’s desideratum. Nevertheless,

it is worth noticing that the idea underlying this desideratum is that the degree of

coherence of a set of propositions does not only depend on the probabilistic

dependence of the whole set but also depends on the probabilistic dependencies of

all subsets. While Csho and Ccar only consider the total set, C0
sho are and C0

car also

take into account its subsets.

The next desideratum has been proposed by Bovens and Olsson (2000) and

generalized by Schippers (2014). Their intuition is that increasing conditional

probabilities among the proposition in some set should increase its coherence, more

formally:

ðD2Þ Let X1 and X2 denote a set X under distribution P1 and P2 respectively and let

X0;X00 be non-empty, disjoint subsets of X. Then for any X1;X2 and any

coherence measure C: If P1ð
V

xi2X0 xij
V

xj2X00 xjÞ[P2ð
V

xi2X0 xij
V

xj2X00 xjÞ for
all X0;X00, then CðX1Þ[CðX2Þ.

Schippers (2014) elegantly showed that D1 and D2 are jointly inconsistent. Relying

on this result we can state the following:

Observation 2 Csho, Ccar, C
0
sho and C0

car do not satisfy D2.

Fitelson (2003) and Siebel and Wolff (2008) have suggested another desider-

atum. For them, logical equivalence is the prime example of maximal coherence.

Since Fitelson’s desideratum is restricted to satisfiable propositions, we refer to

Siebel and Wolff’s more general version for any kinds of propositions:

ðD3Þ For any probability distribution P over a set X of logically equivalent

propositions and any coherence measure C: CðXÞ ¼ maxðCÞ.

As can be seen by counterexample, the following holds:

Observation 3 Csho, Ccar, C
0
sho and C0

car do not satisfy D3.

Still, it is worth noticing that the measures do not behave identically. For a set X

of logically equivalent propositions x1; . . .; xn it holds that Pðx1Þ ¼ . . . ¼ PðxnÞ,
which entails that CshoðXÞ ¼ 1=PðxiÞn�1

and CcarðXÞ ¼ PðxiÞ � PðxiÞn for any

xi 2 X. Hence, in cases of low but non-zero/high PðxiÞ Shogenji’s measure assigns

high/low or neutral degrees of coherence. Carnap’s measure, however, strongly

depends on the number of propositions n. For instance, for n ¼ 2 Carnap’s measure

has a maximum of 0.25 only if PðxiÞ ¼ 0:5 and assigns low degrees of coherence in

cases of low and high PðxiÞ. For n[ 2 the maximum value of 0.25 can be exceeded

and the measure assigns high degrees of coherence only if PðxiÞ is high but not 1.

Fitelson (2003) already noted that Csho’s behaviour in the aforementioned cases is

highly counter-intuitive. Now, it seems that Ccar does not behave any better. Since

these effects carry over to the alternative generalizations as well, the measures

should be avoided for sets of equivalent propositions.
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The next desideratum by Fitelson (2003) can be viewed as the counterpart to D3.

Just as logical equivalence can be considered the prime example of maximal

coherence, unsatisfiability of all subsets can be considered the prime example of

minimal coherence:

ðD4Þ For any probability distribution P over a set X where each X0 � X is

unsatisfiable and any coherence measure C: CðXÞ ¼ minðCÞ.

Regarding this desideratum we can state the following:

Observation 4 Csho, Ccar, C
0
sho and C0

car do not satisfy D4.

As with the aforementioned desideratum there are some subtle differences

between the measures. If each X0 � X is unsatisfiable including the singleton

subsets, then PðxiÞ ¼ 0 for all xi 2 X, which entails that CshoðXÞ and hence C0
shoðXÞ

are undefined, whereas CcarðXÞ ¼ C0
carðXÞ ¼ 0. However, if all singleton subsets of

X are satisfiable and only all non-singleton subsets are unsatisfiable it holds that

CshoðXÞ ¼ 0 and C0
shoðXÞ is undefined whereas CcarðXÞ\0 and C0

carðXÞ\0. Hence,

Shogenji’s measure is minimal indicating the strongest degree of incoherence while

Carnap’s measure assigns values ranging from neutral coherence to degrees of

incoherence. It seems that the measures are only of limited use for the assessment of

unsatisfiable sets of propositions.

Recently, Shogenji (2013) himself formulated a desideratum. The idea is that the

degree of coherence of some set of propositions should increase ceteris paribus with

increasing joint probability of the propositions and decrease ceteris paribus with an

increasing product of the marginal probabilities of the propositions:

ðD5Þ For any probability distribution P over a set X ¼ fx1; x2g and any coherence

measure C:

1. C(X) is an increasing function of Pðx1 ^ x2Þ
2. C(X) is a decreasing function of Pðx1Þ � Pðx2Þ
3. C(X) is neutral if Pðx1 ^ x2Þ ¼ Pðx1Þ � Pðx2Þ

According to Shogenji, the following holds:

Observation 5 Csho, Ccar, C
0
sho and C0

car satisfy D5.

It is quite interesting to see that Shogenji (2013) himself has noticed that aside

from his own measure Carnap’s measure also satisfies his desideratum.

The results from above can be summarized in the following Table 1 where 1

indicates satisfaction and 0 violation of the corresponding desideratum:

Table 1 Summary of the results
Csho Ccar C0

sho C0
car

D1 1 1 1 1

D2 0 0 0 0

D3 0 0 0 0

D4 0 0 0 0

D5 1 1 1 1
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Apparently, all measures satisfy and violate the same five desiderata that have

been put forward in the coherence literature. These similarities might raise the

suspicion that the measures are just ordinally equivalent versions of each other.4 But

this can easily be refuted:

Observation 6 No pair in fCsho;Ccar;C
0
sho;C

0
carg is ordinally equivalent.

This observation guarantees that the measures can disagree in judging a set of

propositions more or less coherent than another set. Hence, despite the aforemen-

tioned similarities the measures are in fact different and have distinct characteristics

regarding their coherence assessments.

Nevertheless, the measures are highly correlated with each other, as can be

shown using Monte Carlo simulation methods.5 For this simulation 1 million joint

probability assignments over 3 propositions were generated using the Mersenne-

Twister algorithm (cf. Matsumoto and Nishimura 1998). For each assignment, the

corresponding values of the measures have been recorded in order to calculate a

cross-correlation matrix containing Spearman’s (1904) rank correlation coefficient

(Pearson’s (1895) product moment correlation coefficient cannot be applied here

since it assumes a linear relationship between the variables) ranging from -1

indicating maximum anti-correlation to 1 indicating maximum correlation

(Table 2).

As the Table 2 indicates, there is a strong correlation of 0.972 between Csho and

Ccar and 0.968 between C
0
sho and C

0
car. This means that increasing/decreasing Csho or

C0
sho values are strongly associated with increasing/decreasing Ccar or C

0
car values.

The evaluation of the coherence desiderata and the simulation results suggest that

Carnap’s measure and its alternative generalization are indeed very closely related

to Shogenji’s and its alternative generalization. And since Shogenji’s measure and

Schupbach’s alternative version are commonly interpreted as probabilistic measures

of coherence, there seems to be no good reason why this interpretation should not be

applicable to Carnap’s measure and its alternative generalization as well. With this

in mind, we will examine the measures in a series of test cases for probabilistic

coherence measures in the next section.

Table 2 Cross-correlation

matrix for the measures
Csho Ccar C0

sho C0
car

Csho 1 0.972 0.992 0.954

Ccar 0.972 1 0.966 0.980

C0
sho 0.992 0.966 1 0.968

C0
car 0.954 0.980 0.968 1

4 By definition, two measures C1 and C2 are ordinally equivalent if and only if for all sets X1;X2 it holds

that C1ðX1Þ\= ¼ =[C1ðX2Þ if and only if C2ðX1Þ\= ¼ =[C2ðX2Þ.
5 A similar approach has been employed by Tentori et al. (2007) for Bayesian measures of confirmation.

For a comprehensive introduction to Monte Carlo methods see e.g. Hammersley and Handscomb (1964).
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3 Coherence Test Cases

Test cases have proven to be both convenient and efficient for the evaluation of

probabilistic coherence measures. They typically consist of a scenario providing

probabilistic information about one or more sets of propositions and a normative

coherence assessment for these sets. If a measure disagrees with this coherence

assessment and the assessment has strong intuitive support, then the measure is to be

considered inadequate.

In a recent study, Koscholke (2015) submitted several measures to 11 test cases

from the literature. They include Akiba’s (2000) die case T1, BonJour’s (1985)

raven case T2, Bovens and Hartmann’s (2003) Tweety case T3, their Tokyo case T4,

their culprit case T5, Glass’ (2005) dodecahedron case T6, Meijs’ (2005) Samurai

sword case T7 and his (2005) rabbit case T8, Meijs and Douven’s (2005) plane

lottery case T9, Schupbach’s (2011) robber case T10 and Siebel’s 2004 pickpock-

eting case T11. We will complement this collection by Schippers and Siebel’s (2015)

inconsistent testimonies case T12 which is not included in Koscholke’s survey. The

results are summarized in the Table 3. Here, 1 indicates a positive test case result

while 0 indicates a negative result.

Apparently, there are only four test cases in which the measures differ, namely

T7, T9, T10 and T12. Let us briefly take a look at them.

Meijs’ (2005) samurai sword test case runs as follows. Imagine that a murder

occurred in a large city and we are interested in finding the murderer. Imagine the

following two situations:

Situation
1:

There are ten million independent and equally likely suspects. 1059

suspects are Japanese, 1059 suspects own a Samurai sword, 9 suspects

are Japanese and own a Samurai sword.

Situation
2:

There are 100 independent and equally likely suspects. 10 suspects are

Japanese, 10 suspects own a Samurai sword, 9 suspects are Japanese

and own a Samurai sword.

Now, consider the following two propositions:

x1 : The murderer is Japanese.

x2 : The murderer owns a Samurai sword.

Meijs argues that X1 denoting fx1; x2g in situation 1 is less coherent than X2, the

same set in situation 2. The measures give the following verdicts (Table 4).

Table 3 Summary of the test

case results
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Csho 0 1 1 1 1 0 0 0 1 0 0 0

Ccar 0 1 1 1 1 0 1 0 1 0 0 0

C0
sho 0 1 1 1 1 0 0 0 0 1 0 0

C0
car 0 1 1 1 1 0 1 0 1 1 0 1
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Here, Shogenji’s measure and its alternative version disagree with Meijs’

coherence assessment by assigning a higher degree of coherence to X1 than to X2.

By contrast, Carnap’s measure and its alternative generalization do the trick.

In Meijs and Douven’s (2005) plane lottery test case we are asked to imagine a

person participating in a lottery consisting of a random flight in a windowless plane.

Her chances for flying to the following locations are as follows: 4/100 for the North

Pole, 49/100 for the South Pole and 47/100 for New Zealand. The probability of

seeing a penguin given she is on the South Pole is 10/49, in New Zealand 1/47 and

on the North Pole 0. Suppose that she leaves the plane not knowing where she has

landed, facing an unrecognizable animal. Now, consider that she is confronted with

the following three propositions:

x1 : The animal you see is a penguin.

x2 : You are on the North Pole.

x3 : You are on the South Pole.

According to Meijs and Douven, the set X1 ¼ fx1; x2g is less coherent than X2 ¼
fx1; x3g since there are no penguins on the Northpole. The results are as follows

(Table 5).

Apparently, only the alternative generalization of Shogenji’s measure fails in this

test case due to an undefined function value for X1.
6

The next test case is Schupbach’s (2011) robber case. Imagine eight equally

likely suspects for a robbery and consider the following independent and equally

reliable witness reports:

x1 : The robbery was committed by suspect 1, 2 or 3.

x2 : The robbery was committed by suspect 1, 2 or 4.

x3 : The robbery was committed by suspect 1, 3 or 4.

x4 : The robbery was committed by suspect 1, 4 or 5.

x5 : The robbery was committed by suspect 1, 6 or 7.

According to Schupbach, X1 ¼ fx1; x2; x3g is more coherent than X2 ¼ fx1; x4; x5g
since the agreement about who is the robber is much stronger in X1 than in X2. Let

us take a look at the measures’ verdicts (Table 6).

Table 4 Results for Meijs’

samurai sword case
X1 X2 Result

Csho 80.3 9 0

Ccar 0.000000889 0.08 1

C0
sho 1.9 0.954 0

C0
car 0.000000889 0.08 1

6 Here and in the following tables ‘NaN’ is short for ‘not a number’ indicating undefined function values

due to division by 0 or logð0Þ. Following Siebel and Wolff (2008), undefined function values are

interpreted as suspended coherence assessments.
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This case is a problem for Csho and Ccar since both measures treat X1 and X2 as

equally coherent. Their alternative generalizations, however, master the test case.

This is no surprise since Schupbach formulated this test case as an argument for his

subset-sensitive generalization of Shogenji’s measure.

Finally, with their inconsistent testimonies case Schippers and Siebel (2015)

presented a modification of Schupbach’s test case. Suppose there are 6 suspects and

each of them is equally likely to be the culprit. Now, consider the following

independent and equally reliable witness reports:

x1 : The criminal was either suspect 1 or 2.

x2 : The criminal was either suspect 2 or 3.

x3 : The criminal was either suspect 1 or 3.

x4 : The criminal was either suspect 3 or 4.

x5 : The criminal was either suspect 5 or 6.

Obviously, X1 ¼ fx1; x2; x3g and X2 ¼ fx1; x4; x5g are inconsistent. But the propo-

sitions in X1 are at least pairwise consistent whereas in X2 they are not. Accordingly,

Schippers and Siebel argue that X1 should be more coherent than X2. Here are the

results (Table 7).

Apparently, only the alternative generalization of Carnap’s measure masters this

case. The other measures fail because they are either undefined or treat both sets as

equally coherent.

Table 5 Results for Meijs and

Douven’s plane lottery case
X1 X2 Result

Csho 0 1.86 1

Ccar �0.004 0.046 1

C0
sho NaN 0.268 0

C0
car �0.004 0.046 1

Table 6 Results for

Schupbach’s robber case
X1 X2 Result

Csho 2.37 2.37 0

Ccar 0.0723 0.0723 0

C0
sho 0.312 0.162 1

C0
car 0.0908 0.0283 1

Table 7 Results for Siebel and

Schippers’ inconsistent

testimonies case

X1 X2 Result

Csho 0 0 0

Ccar �0.037 �0.037 0

C0
sho NaN NaN 0

C0
car 0.009 �0.074 1
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The evaluation of the test cases shows that Carnap’s measure and its alternative

generalization perform quite well compared to Shogenji’s and its alternative

version. Every test case mastered by Shogenji’s measure is also mastered by

Carnap’s measure and every test case mastered by the alternative generalization of

Shogenji’s measure is also mastered by the alternative generalization of Carnap’s

measure. Thus, Carnap’s measure and especially its alternative version represent

quite promising candidates for probabilistic measures of coherence.

4 Conclusion

The results from Sect. 2 point out strong similarities between Shogenji’s coherence

measure and Schupbach’s alternative generalization on the one hand and Carnap’s

relevance measure and its alternative generalization on the other. Based on these

similarities it seems rational to claim that Carnap’s measure and its alternative

version are at least as plausible as candidates for a probabilistic coherence measure

as Shogenji’s measure and its refined version. Additionally, the results from Sect. 3

show that in a number of test cases Carnap’s measure and its refined version provide

coherence assessments several philosophers have argued to be intuitively correct for

the respective cases. Hence, Carnap’s measure and especially its fine-grained

version can be considered promising candidates for a probabilistic measure of

coherence as Shogenji’s measure and Schupbach’s alternative generalization. This

does, of course, not mean that Carnap actually proposed a probabilistic measures of

coherence. Rather, it means that the function Carnap proposed as a candidate for a

measure of confirmation can more fruitfully be interpreted as a candidate

probabilistic measure of coherence. It should therefore be included in future

research on probabilistic coherence measures.
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Appendix

Proof (Observation 1) For Csho cf. Schippers (2014). For Ccar inspect the definition

of independence. If all X0 � X are positively dependent/independent/negatively

dependent then (trivially) X is also positively dependent/independent/negatively

dependent. It is obvious that the following equivalent transformation holds:

P
^

xi2X
xi

 !
S

Y

xi2X
P xið Þ , P

^

xi2X
xi

 !
�
Y

xi2X
P xið ÞS0

The expression on the right hand side is nothing but Carnap’s measure Ccar and 0 is

its threshold value. It therefore satisfies D1. Since C
0
sho and C

0
car take into account the

degrees of coherence of all subsets of a target set X they trivially satisfy D1, too.
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Proof (Observation 2) Cf. Schippers (2014) for a proof that there can be no

coherence measure C which satisfies both D1 and D2. Since by observation 1 Csho,

Ccar, C
0
sho and C0

car satisfy D1, they cannot satisfy D2.

Proof (Observation 3) Consider the following probability distribution over the set

X ¼ fx1; x2g of logically equivalent propositions as counterexample: Pðx1Þ ¼
Pðx2Þ ¼ Pðx1 ^ x2Þ ¼ 1 and hence Csho ¼ 1 and C0

sho ¼ CcarðXÞ ¼ C0
carðXÞ ¼ 0

which is not the maximum value of any of the measures. Hence, the measures do not

satisfy D3.

Proof (Observation 4) Consider the following probability distribution over the set

X ¼ fx1; x2g of inconsistent propositions as counterexample: Pðx1 ^ x2Þ ¼ Pðx1Þ ¼
Pðx2Þ ¼ 0. For CshoðXÞ and C0

shoðXÞ the function values are not defined while

CcarðXÞ ¼ C0
carðXÞ ¼ 0. Hence, none of the measures yields its minimum value and

therefore none satisfies D4.

Proof (Observation 5) For Csho and Ccar cf. Shogenji (2013). Since D5 is formu-

lated for 2 propositions, C0
sho and C0

car trivially satisfy D5, too.

Proof (Observation 6) Meijs’ (2005) test case is a counterexample against the

ordinal equivalence of the pairs (Csho,Ccar), (Csho,C
0
car), (Csho,Ccar) and (C0

sho,C
0
car).

Schupbach’s (2011) test case is a counterexample against the ordinal equivalence of

the pairs ðCsho;C
0
shoÞ and ðCcar;C

0
carÞ.
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